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Abstract

The_ aim of this paper is to bring to the attention of
business professionals the power of using free R
§9ﬂwere for practical optimization problems. We
IScuss the derivation of the traditional portfolio

::emon problem showing how R can depict the
sopahfj-\tl'arlance tange_ncy result with several
exan:s||ca‘ted extens!ons available. Another
ncti:ne Is from optimization of ill-behaved

ncuons\;srlllustrated with Rosenbrock's banana
Slochast lener-Hopf-Whittle model for dynamic
astic optimization shows how to construct a

eh; !
avioral model using regressions to study the

ations of regulators, '

Hands-on Optimization
Using the R-Software

INTRODUCTION AND MEAN VARIANCE
PORTFOLIO

The special issue of this Journal is devoted to optimization. Asa calculus
tool, optimization methods have been well-known for over two centuries.
Choice of an optimum investment portfolio has been formulated as a
constrained (Lagrangian) optimization problem for many decades, with
apopular version by Markowitz (1959). Vinod and Reagle (2005) describe
a version of that model in matrix notation as follows.

Assume that there are n possible assets in which the investor can invest
her money. Given information regarding the past performance of
investments in these assets, the investor must decide how much of her
funds should be allocated to each of these assets. This is a stochastic
(probabilistic not deterministic) optimization problem involving beliefs
about uncertain future returns of assets, irrespective of past performance.
We assume that using past returns, reliable forecasts of future probability
distributions of returns of all assets are available. Initially, it is convenient
to assume that asset returns are Normally distributed, so that means,
variances and covariances describe the entire (multivariate Normal)
density, without having to worry about skewness, kurtosis or other higher
moments.

For example, consider only two assets Band C. The random future returns
might be denoted by random variables B and C, where the (forecasts of)
mean returns are: m;, and m,, forecast variances are: s% and s%,, and forecast
covariance of returns is: COV,,. All are assumed to be available. The
risk-adjusted returns can be easily computed if COV}, = 0 from the two
ratios: (m,/ szb) and (m,/ sf). Then the solution to the optimization problem
is obtained by simply ordering the risk-adjusted return ratios and
choosing the top (few) assets. If asset B offers the highest ratio, the optimal
choice is to invest all available (money) funds in asset B, and nothing in
assets C. That is, the optimal choice allocates the funds in proportion to
the following weights w, = 1 and w, = 0. The allocation of half the funds
in each asset is stated as: w, = 0.5 and w_ = 0.5. There is considerable
generality in the solution above, since the available funds could be in
any amount and any currency. The popular ‘Sharpe ratio” commonly



used by investors worldwide relies on the above sqluhfm,
except that the risk adjusted return is obtained by dividing

by the standard deviation rather than the variance of
returns.

However, zero covariances and Normality or return
distributions are strong assumptions that mar general
applicability of the above solution based on ranking of
Sharpe type ratios discussed in Vinod and Morey (2001,
2002). Vinod and Reagle (2005) emphasize that probability
distribution of returns is typically not at all Normal and
why one must use a more refined measure of risk based
on the ‘down-side’ (lower half) of probability distribution
of asset returns, rather than blindly relying statisticians’
Symumetric measure (of scale) based on the variance (or
standard deviation). In any case, the choice of the optimal
allocation is correctly thought of as a choice of a vector of
n weights w containing proportions which must add up
to 1, since we assume that all available funds are invested
in one of the # assets.

Now we write the mathematical objective function for
stochastically maximizing the risk-adjusted return of the
entire portfolio associated with the allocation proportions:
w. Letidenote a n x 1 vector of ones and m denoteann x 1
vector of average returns. Now the expected value of the
random variable P ‘return of the entire portfolio’ based on
the allocation w is readily defined. For example, with two
assets it is E(P) = E(w,B + w C) = w, m, + w, m_. In matrix
notation, this is written as: w'm, where the transpose of a
vector is denoted by a prime. The variance of the sum of
two random variables is

Var (w,B + w,C) = E[wy(B—m,)+w(C-m))* ...(1)

262 4+ 722
=wiysy +wes.+ 2ww COV,y,

=w'Sw
where w = {w,, w,} and S is the 2 x 2 variance convariance
matrix with (s%, s2) along the diagonal and COV; as the
common off-diagonal term. The variance expression in

matrix notation is called a quadratic form. Of course, in
general, S is an n x n matrix and w has n elements.

Relaxing the unrealistic assumption of zero covariances
among all asset returns is accomplished quite simply by
using an S matrix with nonzero off-diagonal elements in
the quadratic form. The Lagrangian objective function
then is to maximize expected returns E(P) subject to some
penalty for volatility Var(P) involving the quadratic form
(1) and the requirement that elements of w be all positive
and sum to 1. We write:

max, (L) =w'm—(1/2yyw'Sw-n(wr-1) - (2)
where v is Lagrangian coefficient, sometimes called the
coefficient of risk aversion and 1 is the other Lagrangian,
which depends on the size of initial capital. The first order
condition satisfied by the solution of the maximization
problem is obtained by differentiating the expression (2)
with respect to w and setting the derivative equal to zero.
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We assume that the sec ond order cong; Hon 1,

second derivative is satisfied. We discygs , ,, ] |
solution (3) discussed in Finance teyy, “q'in-*.znn o
variance diagram (similar to Figure 1} of *hf 3 ey
theory, with mean return on the vertical agic

on the horizontal axis.

Rren
e 37 W
Fhy

j"}(’"ff;'ﬁ,.
Arie) « 4
ar;ﬁh "

The graphical method makes a distinction bety
risky assets and one asset representin
government bonds. All n assets will have their g,
and variance values, leading to a l'wo—dimensinna]n\,%;,
of n points in this diagram. Since the risk-free rnmf;%
zero (risk of default) variance, it represents , P"){ﬁ}m b
vertical axis. When n is large, we can lump the “";tn the
in a few columns for the purpose of discussion, o o
points representing highest return for each aiu:',y;’ t
variance will lie along the top part to each c“‘um; e
assets lying in the lower part of a column are ‘4o, i e
in the sense that sensible investors will not by, h:
Joining the tops of each such column traceg ; ..

variance ‘frontier,” which will be concave (bows o

en (g, .
g r‘lk}k_;‘_ﬁ:
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The graphical solution is located along the set of aj] .
along the line starting at the point representing nsk:»;
return and ending at the point of tangency of the line .
the concave top part of the frontier (See Fig. 1). A poj:..
the exact middle of this straight line represents 0.3 e,
for both the best risky asset found by the frontier ta.nge;»;;;
point and on a risk-free government bond. The Lagrangs
Y representing risk aversion will help determine the relat.
weight on risk-free investment and the asser g
representing the point of tangency. A risk averse invest:
will have a higher weight on government bonds. [ hav:
attempted to summarize certain important theoreticx
insights from the age-old portfolio theory. Once thee
fundamentals are clearly understood, it is a simple mattr
of using better software to consider a solution for mer
realistic practical situations with the help of modem?
software.

This paper introduces some basics of the R software sysen
freely available on the Internet at: (http://www=
project.org/), with the Wiki hélp systemat: (htp: /- wi

. r-project.org/rwiki/doku.php). R system is ever=

xpanding due to contributions by a world-wia?
community of researchers in the form of contributed by p
world-wide community of researchers in the form o
contributed ‘packages.’ My personal notes about Nf‘“‘:
tricks and pain in using R is a MS word file avaﬂab\e;‘,
the Internet at: (http / / www.fordham.edu/econeme
vinod/r-lang.doc). A package called ‘Portfolio’ 5 J:m
for implementing the above theory and muchrumri -
the recent Finance literature. Diethelm ‘{" ‘_““tj) ]
Rmetrics Core team (http:/ /www.rmetrics-0fe’
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this wonderful set of dozen or wp
"’”P‘mﬁl o packagen to Rall lmgllnilim wuii the lowes
contri” “‘wdm g to the 47-page free online manual
e | ii“ A1’ deseribing the package, ‘il i currently
ii‘(iv(.-d and we expect 1o ke lower partial
peinf “’ ! efined on the lower on the lower part of the
yarta® iiil , of distribution (where lonses «'t’(‘f«-m:) o meantire
pro 't:(iiiw"””"" in Vinod and Reagle (2005),

risk 45 womething packages come with both US
The "“r‘mm(imml data useful for underatanding the
ant ',“‘fciqi‘; iiit‘ packages. For example, an Hlustrative
w(,rkmg-‘; I(-’i e 1 can becomputed by using the following
frontier @ ( I%’ commands. Note that R is a lino-by-line
anipp® OW(, (;bj(rcﬁlﬂ()x‘ii-xii(vd language which ignores
, nl"’q’,m‘b, ond the symbol “#” on any line. This allows
nmw‘"‘aL‘:tyexplanutory comments and instructions in
us 10 ":;(;‘e' The entire snippet can be copled and pasted
our R¢ getthe desired results,

intoRt0 " st firat load this package
’ Portfolio) #you mu ,
yibrary (

Finto Your R session

)](‘ for

/PI91 man Variance Frontier lllustrated Using Portfolio Package of R

B Lol Dhata ane Convirt 1o Hioe teitea Chjet

Dt < i e Heries (data{amalli afrtal)

piek 4 wmmall cape companies

Hleom January 1907 1o Dcember 2001

Db = Data], e(“BII 000, "GYMIN T RIROR I
HAllow for anlimbied Short Selling (mplylag nogative weig,
NConatratnts = "Shiort”

HConmtralnt = o(“minW(1 | nAssetal - 07)
Conatealite = “minW(1 4] = 0"

Spec = portfollotipec () Buet At default
uwetRinkProeiate = 0,01

IF Compute Short Selling Minimun Varianee Portfalio
langeneylortfolio (Data, Spee, Conatealnta)
Ininvarlancel'ortollo (Data, Spec Conateainta)

#lortfollo Welght(a):
i BKF (G GYMB KRON

I 0.200] 03014 0.0000  0.399%
rontler = portfollofirontier (Data, Hpec, (onatraintd)
fiminvarlancePortfolio(Data, Spee, Conatrainta)
frontlerSlicler (frontler) #new window will pop up
fHthin glves several options, click on Tangency PE
ficlick on ulider (I riak-free rate in as desired

hin)
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Minimizing Tl-behaved Functions  Itis well known that
certain functions are ill-behaved and various computer
algorithms for finding the minimum (or maximum) of such
functions can fail to reach the correct global minimum,
For example, consider Rosenbrock’s banana function
dt’ﬁned by'

S y) = (1= %)%+ 100(y - x2)>. . (d)

Ity : ' .
utn : Ry l.m, can be seen at (http:/en.wikipendia.org/)
i n'(s' (ir (wiki/Rosen brock_function). The plot verifies that

“ttinction is ill-behayed, showing a long and narrow

LB

valley shaped like a parabola, where its minimum lies.
Since its global minimum is known tobe at x =y = 1. This
function is often used to test convergence of optimization
algorithms to the global minimum. R comes with two built-
in optimization functions called ‘optim’ and
‘Constroptim.” [tis interesting that R folks are so confident
about good convergence of these functions that the manual
uses the banana function for illustration. Indeed the correct
minimum is achieved by both, upon supplying the
analytical derivatives of the banana function (details
omitted for brevity).
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Wiener- .
OPﬁ!l:le;rz::i(;l:\f-vIVhlhle Model for stochastic dynamic
Was importang ;’\the late 1940's dynamic target seeking
ﬁltering Wonnth or military applications and Kalman
Hopf mode] whe day. Its competition was the Wiener-
too resmCﬁV;z ¢ e t_he SOluhqn was analytic and deemed
to Whittle (198(?; Milltary apPhCa_tions. Sargent’s foreword
methods are ) notes ltlhﬂt Whittle’s frequency domain
for decision :‘llfleﬁ’l'l for deducing closed form solutions
solution to 5 'tareit' wrll(')md (1990) derives a closed form
regulatory ec onfmif g minimization problem from

;T:d;i%‘ulated firm (e.g., electric utility) decides its
i fmt'y, fuel costs and prices py whereas external
o Th orces eventually determine the firm’s net revenue
s fe regulator (e.g., Public Utilities Commission) sets a

air’ rate of. return 7y, which then is the target of a target-
seeking optimization problem. In addition to attempting
toreach tlTe.target, the regulator expects that prices charged
by Fhe utility will be reasonably stable over time. The
variance of prices, V,=E(p,~ p)?, canbe used to measure
such stability.

The regulator also wants that the level’ of prices measured
by the average price  should be aslow as possible. The
Lagrangian objective function is:

L =E(n,—7r’;)2+u1Vp+2p2?, - (3)

where the Lagrangian coefficients satisfy W, >0and p, >
0. Note that the weights (1, My, W) represent relative
importance of the three terms as perceived by the regulator.
The solution derived in Vinod’s (1990) Appendix assumes
that the regulated utility follows a linear decision rule
recursion based on past profits as:

T =b, +b,p,+bym,_,+€,, . (6)
where €, denotes the error term, which is absent in the
normative derivation. Regarding the prices charged to

customers, the normative decision rule implied by Wiener-

Hopf freqneucy domain methods is:
p, =P +Cim_ - )+ Cmi-7%) .. (7)
where  C; =(E-by)/b,and C,= (K, . (8)
£ =(A/2)+(1/2)(A2-4)12 -9
A =by+(1/b,) + (b3/mby) ..(10)
K, =H;by/ (ED2) (1)

where the bars denote mean values. If the error term is
introduced, one can think of (6) as a regression model
making b, and b, as regression coefficients of abehavioral
equation (6) rather than those belonging to a normative
decisionrule.

Clearly, the normative decision rule is feasible only if the
relative weights (1, by, 1) assigned by the regulator are
known. Unfortunately the expressions for coefficients b,
and b, from (7) to (11) are highl}f nonlinear‘and ‘.Nﬂl h?ve
to be estimated from some starting values iteratively ina
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nonlinear least squares type algorith
behavioral estimates from regressjon, canm' ""'Mp,,
values for such iterations. Any dj “erencf’fnviqv an}ﬁfh«_
starting values and ultimate vayeg mea: betyyg,, Ny
of the failure of human agents to op timi;\,lrel? Con
rewrites (7) as a second behavioral cquatimf Vingq (W);n
an error term u, as: T Upon inse

- p) =C1(n;_|“ Tt)+C2(n"F 7

Thus, we can estimate a system of tw e
(12). Their specification based on Wiener. (6) ang
assumes that both firms and regulators e Pt oy
the sense that they try to maximize the;, owfatlopal' in
functions. However, the error termg R 0b ctive
rationality is not perfect.

Mean th]ag the
Equations (6) and (12) together yield egression oy
estimates of a behavioral model used to describ:;fﬁc'e"*
agents including regulators actually behave, [t Ofintere.
to estimate the relative weights [1, (v ) (antergst
comparable units representing estimates of 1 ;2)]. in
importance of the three terms as acted upon bahve
regulators. Vinod's (1990) Table 1 has annya] esti;;the
of relative weights on (Vppq) representing the ‘Dop't Roce;
the Boat” motive and (2 P W,) as the consumer Protecto,
motive for Bell telephone data. It is interesting that betwee,
1963 to 1970 the weight on consumer protection wag pey,
zero, which suddenly jumped in 1971 and remaineg
somewhat high till the brea-up of Bell System in ey,
1982 by anti-trust litigation. !

In R software the regression and any nonlinear systemis
readily estimated by the function ‘lm’ for linear regression
models and ‘nls’ for nonlinear least squares. The package
‘Nonlinear” handles most nonlinear modeling including
chaos. The R package ‘systemfit’ fits a set of structural
nonlinear equations.

) 1
| lf. ”2}
quatl()ns

FINAL REMARKS

This paper illustrates three optimization problems where
R software system can make the task of finding the
solutions and /or obtaining important (empirical) ir.wslgNS
quite practical for anyone. Vinod (2008) provnde§ f}
snippets as templates for extending dozens of practica
problems in Econometrics. Our aim here has been 10
introduce the reader to the power of the R system ?ila
several new packages available free for non-COlefI‘err ”
use to anyone with an Internet access. In partict alzxge-
have shown in Section 1 how to use IPO-rthhodgjf;i;)es
for portfolio selection problems. ?‘aec’txon 2Il s 0
functions ‘optim’ and ‘ConstrOptim for ‘ amdu ding
(constrained) optimization problems Gection I
Rosenbrock'’s ill-behaved banalzia'fgm‘:t‘o et
roposes a way of converting d! ; :
gr()l}:lems into bzhavioral relations and us‘ifr‘x% re,»tzmt gt
to estimate them. Such estimates can thro¥ :




re properly doing their jobs
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